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Discussion of Akritas’ paper by William H. Jefferys

There is little that I can add to Prof. Akritas’ paper. Quoting from his
paper, I would like to remind everyone of his essential point:

It is emphasized that when the magnitude of the measurement
error does not depend on the observation, more efficient proce-
dures based on suitable weighting of the observations are pos-
sible. However, when the magnitude of the measurement error
depends on the observation, weighting biases the procedure (Em-
phasis added).

In other words, the obvious thing to do can be the wrong thing to do.
Oftentimes we find people using particular statistical procedures as “black
boxes,” without fully understanding them. It is important to understand
what you are doing and why. Unthinking use of a particular procedure
without understanding its properties is a recipe for disaster.

I also wish to call attention to William Wheaton’s poster paper at this
conference, “A Poisson parable: Bias in linear least squares estimation,”
which presents a simple example of the same phenomenon that Akritas
has discussed. Wheaton considers the estimation of an unknown quantity
which is measured with Poisson noise. For example, suppose we make k in-
dependent measurements of the luminosity L of a star by counting photons,
obtaining for the ith observation Ni counts during the integration period
ti to yield an estimated luminosity L̂i = Ni/ti. What is the correct method
of combining the L̂i to estimate L? Since the process being observed is
Poisson, the variance of an individual observation is proportional to Li,
and one might be tempted to calculate a weighted average of the L̂i with
weights proportional to 1/Ni; but this would be wrong, and the resulting
estimator would be biased and in fact inconsistent. Wheaton shows that
an unbiased estimator is given by

∑
Ni/

∑
ti.

The example that Akritas discusses is somewhat more complex, but re-
lated. Here, we are measuring some property of a class of objects which has
a natural cosmic scatter. For example, we could be measuring the luminosi-
ties of different members of a given class of stars in a cluster or galaxy, and
the luminosity Li of a given star i could be distributed according to some
probability density P (Li | L, . . .).

The individual Li are unidentified; the best we can do is to estimate the
Li by L̂i = Ni/ti, where Ni photons are counted during an integration pe-
riod ti. Again, Akritas shows that the “obvious” estimator for L obtained
by computing a weighted average of the L̂i, weighting by the variance esti-
mated in the obvious way from the Poisson nature of the photon counting
process, yields a biased and even inconsistent estimator of L. Instead, the
unweighted average is preferable, as it is manifestly unbiased. (In deriving
his estimators, Akritas is following a moment method that has also been
applied in astronomy by Deeming [Dee68].)
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Since Akritas, Wheaton and I agree on these essential points, I thought it
would be useful to use the remainder of my time to discuss an alternative,
Bayesian approach to such problems. Thus, we observe counts (Ni, . . . , Nk)
for stars (1, . . . , k) in some class. Each star is characterized by its actual
luminosity Li (expected counts/second) and integration time ti. It follows
that Ni follows a Poisson distribution:

P (Ni | Li, ti) =
(Liti)

Ni exp(−Liti)
Ni!

Because of cosmic scatter, each individual star in the class may have a
different luminosity Li. Assume, therefore, that the Li are distributed ac-
cording to some probability density, e.g., we might assume normality:

Li ∼ N (L, σ2)

so that

P (Li | L, σ) ∝ 1
σ

exp
(
− (Li − L)2

2σ2

)
To approach this problem from a Bayesian viewpoint, we will also find

it necessary to specify a prior distribution P (L, σ) on L and σ. It follows
from the definition of conditional probability that the prior distribution on
(Li, L, σ) is given by

P (Li, L, σ) = P (Li | L, σ)P (L, σ).

By Bayes’ theorem, therefore, the posterior distribution of (Li, L, σ), given
the data, is proportional to the prior times the likelihood:

P (Li, L, σ | Ni) ∝ P (Li, L, σ)P (Ni | Li, ti, L, σ)
= P (Li, L, σ)P (Ni | Li, ti).

Assuming independence, the complete posterior distribution for all ob-
servations is just the product of these over i:

P (Li, . . . , Lk, L, σ | Ni, . . . , Nk) ∝
∏
i

P (Li, L, σ)P (Ni | Li, ti, L, σ).

Everything of interest is to be inferred from the posterior distribution.
For example, we are interested in making inferences about L. The stan-
dard Bayesian prescription is to marginalize (integrate) with respect to the
nuisance variables (L1, . . . , Lk, σ), obtaining a posterior distribution in L
alone. Thus

P (L | data) ∝
∫
. . .

∫
P (L1, . . . , Lk, L, σ | data) dLi . . . dLk dσ.
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Once we have the posterior distribution of L in hand, we can compute
Bayesian confidence intervals, posterior means, posterior medians, and so
forth, for L.

In actuality, the particular case we have probably can’t be integrated in
closed form, so some approximate method such as Markov Chain Monte
Carlo (MCMC) would have to be used. However, we can consider Wheaton’s
limiting case, obtained by letting σ→0, which results in a simplified prob-
lem that can be solved in closed form. We use the usual “automatic” (im-
proper) prior

P (L) ∝ 1
L
,

which yields the posterior distribution

P (L | ti, Ni) ∝ 1
L

∏
i

(Lti)
Ni exp (−Lti)

∝ LN−1 exp (−LT )

where
T =

∑
i

ti, N =
∑
i

Ni

are sufficient statistics. The full normalized posterior distribution is there-
fore

P (L | data) =
T (LT )N−1 exp (−LT )

(N − 1)!

The procedure at this point would be to derive whatever is desired from
the posterior distribution. For example, if we want an estimator for L, we
can compute the posterior mean or mode. The posterior mean is

L̂mean =
∫
LP (L | data) dL =

N

T

The mode would be (N − 1)/T , which is biased but consistent.
The interesting thing about this is that the Bayesian prescription au-

tomatically tells us not to use weighted averages, and instead leads us to
estimators similar to (and in this simple case even identical to) the esti-
mator advocated by Akritas and Wheaton. In more complex cases such as
those with cosmic scatter, however, it is to be expected that the Bayesian
estimators would not end up being a simple unweighted average, but would
in general be nonlinear and computable only by numerical means. Nonethe-
less, they may well turn out to be better than the simple unweighted aver-
ages advocated by Akritas.

The discussion can be extended to the problem where the background
count must also be considered [Lor92]. Whereas a straightforward approach
using classical estimators can run into the problem in low signal situations
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of yielding unphysical negative luminosities, the natural Bayesian solution
to the same problem cannot result in such anomalies. At the same time,
the Bayesian solution is typically simple and to set up, while at the same
time handling the problem of unphysical parameters quite automatically.

Response to Professor Rao

Professor Rao asks about maximizing the likelihood function instead of
calculating marginal distributions. A Bayesian would be more likely to ask
about maximizing the posterior distribution, obtaining the so-called max-
imum a posteriori (MAP) estimate, but in the situation at hand either
method may run into difficulty. It is well-known that in situations where
some variables are unidentified, like errors-in-variables problems, maximum
likelihood gives the wrong answer for the variance—it is off by a factor of
two [KS79]. Similarly, in nonlinear errors-in- variables problems, maximum
likelihood may similarly produce inconsistent estimators for other inter-
esting parameters [Ful87]. In contrast, the standard Bayesian prescription
is to marginalize, that is, to integrate over the unidentified and nuisance
variables. This does not result in an inconsistent estimator, if the prior is
chosen properly. For a discussion of the Bayesian approach to this problem
in the context of linear regression, see [Zel87].
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