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SUMMARY

Cepheids are a type of variable star that play a key role in establishing the astronomical distance scale.
These objects undergo regular pulsations, shrinking and expanding as their luminosities and colors vary
in synchronism. It has long been known that the period of the pulsation is related to the luminosity of the
star (the Period-Luminosity relationship), and therefore these objects become ”standard candles” that
allow us to estimate the distances of objects once we measure their periods and the flux from the stars
received on Earth. Calibrating the zero-point of the Period-Luminosity relationship therefore becomes a
critical measurement that has repercussions throughout astronomy. These stars are very luminous, and
therefore can be seen to rather large distances, which makes them very valuable as standard candles;
however, most of them are out of reach of the most direct distance measurements, and even the nearest can
only be measured with rather large errors. We have been investigating another approach to determining
the distance to these objects that depends upon a detailed study of both photometry and radial velocity
information. Analysis of such data has up until now been ratherad hoc; we have been exploring Bayesian
methods in order to systematize the technique. Among the features with which a fully Bayesian analysis
of these data must contend are: Model selection (the light curves and velocity profiles need to be modeled
accurately yet parsimoniously), and errors-in-variables. We will describe several approaches, one due
to Gull, and another using the program BUGS by Spiegelhalteret. al. We are particularly interested in
learning ideas that may assist us in carrying out our program.
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1. STATEMENT OF THE PROBLEM

The classical method of measuring the distance to a star is to estimate the angleφ subtended
by the Earth’s orbit as the ratioR/d of the known radiusR of the Earth’s orbit to the distance
to the star. Thus,φ ≈ tan φ = R/d. φ can be measured directly as a displacement in the
angular position of the star due to the motion of the Earth around the Sun. Unfortunately, this
method works only for the nearest stars, because the angleφ is extremely small; it is less than
one arcsecond even for the nearest star from the Sun, and with the best current techniques, the
method can reliably be used (with errors of< 10%) only for stars within about 100 parsecs of
the Sun (about 325 light years). Since the distance to the center of our own galaxy is estimated
to be about 8,000 parsecs, the distance to the nearest galaxy other than our own at about 50,000
parsecs, and the size of the observable universe of order5 × 109 parsecs, it is easily seen that
this method is wholly inadequate for determining the distances to most objects in the universe.

Another technique is to turn the relationshipφ ≈ R/d around, interpretingR as the radius
of a star andφ as its angular radius. If we have some sort of estimate ofR, then by measuringφ
we can inferd. This method was first used by Tycho Brahe in the 16th century, who estimated
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the angular radii of the brightest stars at about1′ of arc, and believing that they were comparable
in linear size to the Sun, which has an angular radius of about15′, was able to put a lower bound
on the distance to these stars at 15 times the distance from the Earth to the Sun. That this was
a gross underestimate is in hindsight no surprise; the actual diameters of the largest stars are
now known to be hundreds of times larger than the Sun, and their angular sizes are thousands
of times smaller than Tycho’s estimate. But Tycho’s basic idea was sound.

Fortunately, there is a very good way to estimateφ. From the Stefan-Boltzmann law, the
luminosityL of a spherical star is proportional toR2T 4

e , whereR is the radius of the star andTe
is the effective temperature at the surface of the star. Since the observed fluxF from the star is
inversely proportional tod2, it follows thatF ∝ (R/d)2T 4

e = φ2T 4
e . A similar proportionality

holds for the fluxFB observed in any wavelength bandpassB. In practice, we use an empirical
relationship due to Barnes and Evans to inferFB from the observed color index of the star,
which is strongly correlated withTe (Barnes and Evans 1976; Barneset. al. 1976).

However, only under special circumstances is it possible to get a similar handle on the actual
radiusR of a star. One of those circumstances occurs with Cepheid variables, since they expand
and contract. This means that the spectral lines in the star’s spectrum are shifted in wavelength
due to the Doppler shift; as the near surface of the star expands towards us, the wavelengths are
shifted towards the blue, and as it contracts, towards the red. This means that we can observe
the radial velocityVr = V̄r + ∆ Vr of the surface of the star as a function of time, and by
integration can determine the radiusR(t) = R0 + ∆ R = R0 −

∫
∆ Vrdt (the negative sign

coming in because the star expands as the near surface moves towards us).
This suggests that by measuring the changing flux from the star (as well asTe, which also

changes) we may be able to infer bothφ(t) andR(t); from theamplitudeof these oscillations,
we can infer the distance to the star from

φ(t) = R(t)/d = R0/d− (1/d)
∫

∆ Vrdt = φ0 + ∆ R/d (1)

.

2. THE CURRENT APPROACH

The current approach (e.g., Barnes,et. al. 1977, Gierenet. al. 1990, Gierenet. al. 1993)
has been to do just as outlined above. That is, we observe the velocity curve, smooth it
either by eye or by fitting a function, integrate the smoothed curve to obtain the displacement
∆R(t) = R(t) − R0, and then perform a least-squares fit of Eq.(1) to the photometric data,
using the observed flux and color index to predictφ.

This is clearly inadequate on statistical grounds, for the following reasons: First, the fitting
of the velocities isad hoc. There is no clear way to determine how well the velocities have been
fitted, if an “eyeball” method is used; and if a fit to a Fourier series is employed, one still must
contend with the question of how many terms to take in the series. This faces us with amodel
selectionproblem.

Second, the fitting of Eq. (1) has been done with error in the independent variable
∫

∆Vr dt.
This makes the problem into an errors-in-variables problem, and brings the worrying problem
that the quantity1/d, which we are trying to estimate, may be estimated with avoidable bias. This
point has been raised by Laney and Stobie (1995), who have advocated a maximum likelihood
approach.

Third, since the error in∆R(t) has not been taken into account, the variance ofd will be
underestimated. This is clearly undesirable.
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3. GAUSSFIT—AN APPROXIMATE BAYESIAN APPROACH

For these reasons, we decided to investigate a Bayesian approach to this problem. We had
available to us a software package, GaussFit (Jefferyset. al1988), developed as a tool to reduce
Hubble Space Telescope astrometry data, which implements a maximum likelihood algorithm
due to Jefferys (1990). GaussFit includes a maximum likelihood analysis of the errors-in-
variables problem. Of course, maximum likelihood estimation is not Bayesian. However, it
can be considered as an approximation to a Bayesian maximuma posteriori(MAP) estimator
with a flat prior. Indeed, GaussFit also provides the possibility of introducing a normal prior
for any parameter by the obvious technique of regarding the parameter as an observation with
a specified mean and variance, although we have not used that capability in our problem up to
this point.

Since GaussFit solves the second and third problems by allowing us to solve the errors-
in-variables problem exactly as a maximum likelihood problem, we decided to concentrate on
the first of the points in Section 2: selecting which model of the velocity curve was the most
satisfactory. To do this, we have employed a suggestion of Gull (1988). This idea is ideally
suited to the GaussFit software, since it uses normal approximations and the numbers needed
to apply it can be calculated from the maximum likelihood solution.

Gull begins by considering a linear model

x = Aθ + ε (2)

wherex is theN -vector of observations,A an (N ×M) design matrix,θ theM -vector of
parameters, andε theN -vector of errors, which are assumediid normal: εj ∼ N (0, σ).
Observing that by neglectingε we would have, approximately,

x′x ≈ θ′ A′A θ

he suggests a maximum-entropy priorp(θ | M) determined with the constraint

E(θ′A′Aθ) = x′x

This yields the priorp(θ |M,β) ∝ β−M/2exp(−θ′A′Aθ/2β). The likelihood is

L ∝ σ−N/2exp(−(x−Aθ)′(x−Aθ)/2σ).

With Jeffreys priors onβ andσ, and with the assumption that the data are very good
compared to the unmodeled data so that|β| À |σ|, which is the case for our data, the posterior
distribution splits into two integrable parts. Integrating over everything exceptM , Gull arrives
at a very simple expression for the posterior probability ofM :

p(M |x) ∝
(
V (0)
V (M)

)N−M
2

Γ
(
N −M

2

)
Γ
(
M

2

)
(3)

whereV (0) = x′x is the “sum-of-squared-residuals” for theunmodeleddata andV (M) =
(x − Aθ̂)′(x − Aθ̂) is the “sum-of-squared-residuals” of the data modeled with theM -vector
θ̂, which is the ordinary least-squares estimator forθ.

For simplicity, we have used this formula to evaluate the modeling of the velocity data
by Fourier series. The results were very satisfactory, and agree well with what we intuitively
see in the data. For the star T Monocerotis (T Mon), which is a somewhat difficult case
since the velocity curve contains a strange, and physically real “wiggle,” the fifth-order Fourier
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polynomial owns80% of the posterior probability, and the sixth-order polynomial owns20%.
Only negligible amounts of posterior probability are owned by the other choices. This agrees
with what our eyeballs tell us (it passes Savage’s “interocular traumatic test”). This can be seen
in Figures (1-3), which show the result of the fit for fourth through sixth order. The fourth-order
fit is clearly inadequate as it fails to fit a physically real “glitch;” It is difficult to choose between
fifth and sixth order, but there is some evidence of overfitting in the sixth-order picture.

Figure 1. The radial velocity data for T Mon fitted with a fourth-order trigonometric polynomial. The
arrow points to a physically real “glitch” in the velocity. This fit is clearly inadequate.

Figure 2. The radial velocity data for T Mon fitted with a fifth-order trigonometric polynomial. This fit
seems quite adequate to the data, including the fit to the “glitch” of Figure 1.

We have so far analyzed the data from three stars: T Mon, T Vulpeculae and SZ Tauri. All
gave similar results, with T Mon being the most difficult case because of its unusual velocity
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curve. In each case, the order of trigonometric polynomial picked out by Gull’s rule (Eq. (3))
agrees well with what the eye sees. So, we believe that Gull’s rule is a simple and effective
criterion for choosing how far to take the expansion, at least for our data.

Figure 3. The radial velocity data for T Mon fitted with a sixth-order trigonometric polynomial. This
fit is not clearly better than the fit of Figure 2, and shows some evidence of overfitting, as indicated by
the arrowsA − C; these bumps are not supported by any data (c.f. Figure 2). BumpA, in particular,
is much larger than in the lower order fit; BumpsB andC are probably a consequence of the program
forcing the curve nearly through the adjacent points

4. BUGS—A FULLY BAYESIAN APPROACH
Nonetheless, it is our aim to analyze our data from a fully Bayesian point of view, and to do this
we turned to BUGS (Spiegelhalteret. al. 1996). Like GaussFit, BUGS provides a fully-featured
computer language that is designed specifically for expressing inference problems. However,
the inference is Bayesian, not maximum likelihood, and BUGS provides a variety of tools to
express Bayesian problems in an economical and transparent way.

A significant oversight in BUGS, from our point of view, is the lack of the trignometric
functions needed to handle the Fourier polynomials that we need. This is apparently a legacy
of the biostatistics environment in which BUGS was developed—no one thought that anyone
would find sines and cosines useful! But, BUGS is extremely well designed for the problems it
is meant to solve, and (as we have found) it is bound to be found useful in the physical sciences
as well. So we hope and expect that this and other deficiencies will be remedied in due course,
and we encourage the authors of BUGS to add these capabilities to their program.

We were able to overcome the lack of sines and cosines by precomputing the design matrix
A and providing it as input data to BUGS; this strategy worked well, although it will not be
sufficient in the future, because some of our stars will also require determining the zero-point
of the phase as an additional nuisance parameter. We can see work-arounds for this problem,
but they are not pretty and it would be better if the trigonometric functions were available in the
BUGS language itself.

Our ultimate aim is to produce a unified program that will allow us to analyze the photometric
and radial velocity data from a star as a whole. It would determine all of the relevant coefficients
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and parameters, and simultaneously solve the model-selection problem by considering each
order of trigonometric polynomial, indexed byM , in the complete model. BUGS would
determine which models are best favored by the data by computing the posterior probability
as a function ofM (integrating over all the other parameters). Since BUGS can automatically
produce the marginal distributions of any desired parameter by monitoring the parameter’s value
after the initial “burn-in” period, we would then be able to determine the marginal distribution
of the distanced to the star, averaged over all orders of model.

Thus far we have not been able to carry out this program to its conclusion. This is partly
because we embarked on this aspect of our enterprise relatively recently, and are still learning
how to use BUGS. We have successfully built a BUGS model that will perform a complete
errors-in-variables solution for agivenchoice ofM , and calculate the marginal distribution of
d givenM . However, we have not yet achieved a model that can choose amongst the different
ordersM . Our first attempts to do this work well with a simplified problem having only a
small number of parameters, but for our actual problem, involving 15-20 parameters (mostly
coefficients of the Fourier polynomials), we have not succeded in getting BUGS to sample all of
the choices ofM . Instead, the Gibbs sampler is getting “stuck” on one model (not necessarily
even the “best” model, given our experience with the work reported in Section 3) and ignoring
the others. We think that this is due to our inexperience with BUGS, and that more work will
enable us to overcome this problem.

We are encouraged by our experience so far with BUGS. BUGS was not designed for
problems like ours, yet what we have learned about it so far, despite the deficiencies we have
found, indicates that BUGS can be used as an effective tool for Bayesian inference in problems
very different from those for which it was designed. The authors of BUGS are to be congratulated
for what they have accomplished, and we encourage them, with the cooperation of workers in
other fields, to expand the capabilities of this very powerful tool.

We hope that our experience with BUGS will encourage others in the physical sciences to
consider using it for their problems, and that they will communicate their needs to the authors
of the program. We have had excellent feedback from Professor Spiegelhalter on the use of
BUGS. We think that BUGS has great promise and look forward to its future development in
directions that will make it more useful in the physical sciences.

5. WHAT’S NEXT?

The first thing on our agenda, of course, is to get our BUGS model working correctly with
regard to model selection. Only when this is accomplished will we be able to move forward.

When this has been done, we want to experiment with a reasonable range of priors. Other
than the prior onθ, which is crucial for the model selection problem, the prior that is most
critical is perhaps the one ond, the distance to the star. The galaxy is flat, and we can expect
the number of stars to go asp(d) ∝ d, up to some cutoff representing the size of the galaxy.
But there are all sorts of issues here, for example, extinction due to dust in the galactic plane
tends to limit how far we can see in complicated ways. It is therefore necessary to see how
the choice of prior may affect the quantities we are trying to estimate. If we were to find that
the results depend sensitively on the prior (over a reasonable range of priors), then this would
indicate that our results are not as well-determined as the formal Bayesian credible intervals
might indicate. On the other hand, if the results are robust with respect to the priors, then we
can have a reasonable degree of confidence in them.

We will then want to compare the results we get from the fully Bayesian BUGS analysis
with the ones we get from our approximately-Bayes method using GaussFit. Since BUGS uses
Markov chain Monte Carlo methods, it is relatively inefficient in its use of computer resources,



      

and the question of convergence is always an issue. If it were to turn out that BUGS and
GaussFit gave similar results, we would probably decide to use GaussFit for the entire database,
consisting of something over 100 stars. On the other hand, it is quite possible that the BUGS
model will ultimately turn out to be the model of choice.

Ultimately we will want to compare our best solutions with the alternative approaches of
Laney & Stobie (1995), and Gierenet. al. (1993), as well as with various other approaches that
appear elsewhere in the astronomical literature. Do some of these methods build in unforseen
biases? If so, how can they be dealt with? Is it possible to estimate the biases or must the entire
reduction be done againde novo? If the latter, we may have a problem in even obtaining the
data!

Finally, we note that Fourier polynomials appear frequently in the astronomical literature as
approximations to periodic processes. An effective way to determine how many terms to take
in these polynomials is of great interest in astronomy, and probably many other fields as well.
So, our work on this problem has implications that are much wider than just the problem of the
zero-point of the Cepheid period-luminosity relationship, important as that problem is.
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